HOMEWORK 4
Que1: (10p) Assume that $x, y \in R$ and $z=x+i y \in C$ and answer the followings:
Evaluate each of these integrals, where the path is an arbitrary contour between the limits of integration:
(a) $\int_{i}^{i / 2} e^{\pi z} d z$;
(b) $\int_{0}^{\pi+2 i} \cos \left(\frac{z}{2}\right) d z ;$
(c) $\int_{1}^{3}(z-2)^{3} d z$

Que2:(20p)

For the contours C and functions f in Exercises 1 to 6 , use parametric representations for C, or legs of C, to evaluate

$$
\int_{C} f(z) d z
$$

1. $f(z)=(z+2) / z$ and C is
(a) the semicircle $z=2 e^{i t} \quad(0 \leqq \theta \leqq \pi)$;
(b) the semicircle $z=2 e^{i \theta} \quad(\pi \leqq \theta \leqq 2 \pi)$;
(c) the circle $z=2 e^{i \theta}(0 \leqq \theta \leqq 2 \pi)$.

Que3: (30 p) Assume that $x, y \in R$ and $z=x+i y \in C$ and answer the followings:

1. Let C denote the boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$, where C is described in the positive sense. Evaluate each of these integrals:
(a) $\int_{C} \frac{e^{-z} d z}{z-(\pi i / 2)}$;
(b) $\int_{c} \frac{\cos z}{z\left(z^{2}+8\right)} d z$;
(c) $\int_{c} \frac{z d z}{2 z+1}$;

Que4: (20 p) : C is the arc from $1+\mathrm{i}$ to $3+9 \mathrm{i}$ along the curve $y=x^{2}$ and

$$
f(z)=\left\{\begin{array}{rr}
2 x, & 0<x<2 \\
y, & 2<x<3
\end{array}\right.
$$

Calculate the $\oint f(z) d z$ on counter C .

Que5: (20 p):
11. Evaluate $\oint_{C}(\bar{z}-3) d z$ where C is the indicated closed curve along the first quadrant part of the circle $|z|=2$, and the indicated parts of the x and y axes. Hint : Don't try to use Cauchy's theorem! (Why not? Further hint: See Problem 2.3.)

