Due Date: 22.11.2019 – Monday – Morning 10:00 AM

HOMEWORK 4

Que1: (10 p) Assume that $x, y \in R$ and $z = x + iy \in C$ and answer the followings:

Evaluate each of these integrals, where the path is an arbitrary contour between the limits of integration:

(a)
$$\int_{1}^{1/2} e^{\pi z} dz$$
; (b) $\int_{0}^{\pi + 2i} \cos\left(\frac{z}{2}\right) dz$; (c) $\int_{1}^{3} (z - 2)^{3} dz$.

Que2:(20p)

For the contours C and functions f in Exercises 1 to 6, use parametric representations for C, or legs of C, to evaluate

$$\int_C f(z)\,dz\,.$$

- 1. $f(z) = \frac{1}{(z + 2)/z}$ and C is (a) the semicircle $z = 2e^{i\theta}$ $(0 \le \theta \le \pi)$; (b) the semicircle $z = 2e^{i\theta}$ $(\pi \le \theta \le 2\pi)$; (c) the semicircle $z = 2e^{i\theta}$ $(\pi \le \theta \le 2\pi)$;
 - (c) the circle $z = 2e^{i\theta}$ $(0 \le \theta \le 2\pi)$.

Que3: (30 p) Assume that $x, y \in R$ and $z = x + iy \in C$ and answer the followings:

1. Let C denote the boundary of the square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$, where C is described in the positive sense. Evaluate each of these integrals:

(a)
$$\int_C \frac{e^{-z} dz}{z - (\pi i/2)};$$
 (b) $\int_C \frac{\cos z}{z(z^2 + 8)} dz;$ (c) $\int_C \frac{z dz}{2z + 1};$

Due Date: 22.11.2019 – Monday – Morning 10:00 AM

Que4: (20 p) : C is the arc from 1+i to 3+9i along the curve $y = x^2$ and

$$f(z) = \begin{cases} 2x, & 0 < x < 2\\ y, & 2 < x < 3 \end{cases}$$

Calculate the $\oint f(z)dz$ on counter C.

Que5: (20 p):

11. Evaluate $\oint_C (\bar{z} - 3) dz$ where C is the indicated closed curve along the first quadrant part of the circle |z| = 2, and the indicated parts of the x and y axes. *Hint*: Don't try to use Cauchy's theorem! (Why not? *Further hint*: See Problem 2.3.)

